

Электрогидравлическое управление: запуск и поиск проблем

Следующие замечания сообщают некоторые общие положения и предостережения по процедурам, для гарантии хорошей работы электрогидравлической системы в системах с обратной связью, типичной для современных электрогидравлических осей и для высокой эффективности пропорциональных компонентов со встроенной аналоговой или цифровой электроникой. По более подробной информации о компонентах, см. соответствующие технические таблицы. Для правильного функционирования электрогидравлических компонентов, должны соблюдаться следующие предписания.

1 ΓΝΔΡΑΒΛΝΥΕСΚИЙ ΡΑЗΔΕΛ

- 1.1 Чистота бака и труб
- 1.2 Соединения
- 1.3 Фильтрация
- 1.4 Гидравлический дренаж и обратные линии
- 1.5 Гидравлическая жидкость
- 1.6 Требования к жидкости
- 1.7 Сапуны

2 ЭЛЕКТРОННЫЙ РАЗДЕЛ

- 2.1 Питание
- 2.2 Электрические кабели
- 2.3 Подавление электрических шумов
- 2.4 Использование сервисных сигналов
- 2.5 Электронные калибровки 2.6 Температура и окружающая среда
- 3.3 Опция /О 3.4 Опция /F
 - 3.5 Опция /S и /Z

3.2 Опция /І

3.1 Стандартная версия

3.6 Опция / Для цифровых драйверов

3 РАЗДЕЛ ПО ПОДКЛЮЧЕНИЮ ВСТРОЕННОЙ ЭЛЕКТРОНИКИ

3.7 Опция /SP и /ZP для цифровых драйверов

4 ПОДКЛЮЧЕНИЕ СИГНАЛОВ УПРАВЛЕНИЯ

5 ПОДКЛЮЧЕНИЕ ЭКРАНИРОВКИ

- для трубопровода с простыми соединениями:
- система должна быть осмотрена при первом запуске или после обслуживания;
- применяйте предварительно настроенный обратный клапан (например, 4 бар) на сливной линии в бак, чтобы избежать пустот в трубах

1 ГИДРАВЛИЧЕСКИЙ РАЗДЕЛ

1.1 Чистота бака и труб

Бак насосной станции должен быть вычищен, должны быть удалены все загрязнители и посторонние объекты, трубопровод должен быть холодным, отмытым и с подпиленными заусенцами. После сборки необходимо промыть трубопровод от всех загрязнителей; во время этой операции пропорциональные клапаны должны быть сняты и заменены обходами или релейными клапанами.

1.2 Гидравлические соединения

Гибкие шланги должны быть армированного типа на напорной линии от насосной станции до пропорционального клапана и на обратной линии от пропорционального клапана. Если из-за недостатка запаса прочности возможно повреждение машины или травмирование оператора, должны быть приняты надлежащие меры (крепление концов шланга цепями) или аналогичные альтернативные мероприятия.

Пропорциональный клапан лолжен быть установлен как можно ближе к приводу. чтобы гарантировать максимальную жесткость цепи, и как следствие, лучшие динамические характеристики.

1.3 Гидравлическая жидкость

Используйте только жидкости хорошего качества согласно DIN 51524...535, с высоким индексом вязкости. Рекомендуемая вязкость 15-100 сСт при 40°С. Когда температура жидкости превышает 60°С, выберите витоновые уплотнения; в любом случае температура жидкости превышать 80°C.

1.4 Фильтрация жидкости

Фильтрация жидкости предотвращает износ гидравлических компонентов, вызываемый загрязнением жидкости. Загрязнение жидкости должно соответство-

вать коду ISO 18/15 при монтаже напорного фильтра тонкостью 10 мкм в линию при β_{10} = 75. Напорный фильтр должен быть установлен по возможности непосредственно перед пропорциональным клапаном; фильтроэлемент должен быть высокопрочным, с электрическим индикатором загрязнения, без байпасного клапана.

Промывка (продолжительность по крайней мере 15 мин) должна быть выполнена во время ввода системы в эксплуатацию, для удаления загрязнений.

После этой операции фильтроэлементы и аксессуары не MOLAL использоваться повторно.

Следующие дополнительные предосторожности должны быть взяты во внимание: убедитесь, что фильтр имеет правильный

- размер, для обеспечения эффективности; главный источник загрязнения гидравли-
- ческой системы -

воздух, связанный с окружающей средой: обязательно должны быть предусмотрены надлежащие сапуны на насосной станции;

- фильтрация жидкости при заливке в бак (новая жидкость загрязнена) при помощи GL-15 (таблица L150) или подобным.

1.5 Гидравлические дренажи и обратные **ЛИНИИ**

Дренаж является существенным во всех системах, потому что он определяет минимальный уровень давления.

Он должен быть связан с баком без противолавления.

Связь дренажа обеспечивается по штоковой стороне сервоцилиндра, см. рис.

Обратная линия от пропорционального клапана в бак должна быть такого размера, чтобы избежать встречного давления < 1 бар; причине рекомендуется использовать много отдельных обратных линий, непосредственно связанных с баком.

1.6 Свойства жидкости

система Высокоэффективная работать в гарантированном температурном диапазоне жидкости (между 40 и 50°C), так, чтобы вязкость оставалась постоянной во время работы. Рабочий цикл должен начаться после того, как достигнута предписанная температура.

1.7 Сапуны

Воздух гидроприводах гидравлическую жесткость, это - причина сбоев в работе. Сапунами комплектуются пропорциональные клапаны и сервоцилиндры; прокачные клапаны должны быть установлены в местах воздушных пробок в гидросистеме.

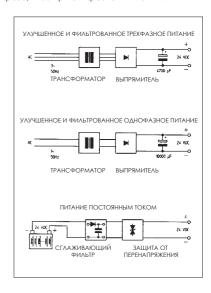
Должны быть учтены следующие дополнительные предупреждения:

При запуске системы все клапаны должны быть открыты для удаления воздуха. Будьте осторожны с сервоцилиндрами, в частности с камерой датчика, которая сделана для реализации демпфирования в конце хода;

2 ЭЛЕКТРОННЫЙ РАЗДЕЛ

2.1 Питание

Уровень напряжения должен быть в пределах следующего диапазона (в зависимости от типа устройства):


номинальное напряжение: В = 24 В DC:

отфильтрованное и выпрямленное напряжение: Вгтс = 21-33 В (макс. колебание = 2 В

Потребляющее устройство должно быть отображено в заказе для генерирования корректного напряжения, когда все приложения потребляют максимальный ток одновременно; 50 Вт макс. должен быть предусмотрен дл каждого поставляемого клапа-

Следующие дополнительные замечания должны быть учтены, см. рис. ниже:

- питание от батареи: перенапряжение (существенно больше, чем 34 В) повреждают электрическую цепь; рекомендуется использование подходящих фильтров стабилизаторов напряжения;
- улучшенное питание АС: среднее значение в пределах Brms = 21 – 28 В, с конденсатором на 10000 мкф для каждых 3 А тока, при одной фазе; 4700 при 3-х фазном питании.

2.2 Электрические подсоединения

Силовые кабели (разъемы, электронные регуляторы или прочие нагрузки) должны быть отделены от кабелей управления (опорные сигналы и обратная связь, сигналы заземления), чтобы избежать интерференции.

Электрические кабели для электронных сигналов должны быть защищены, как показано в разделе [5], экраном или оплеткой (согласно СЕІ 11-17).

Рекомендуемое сечение кабеля:

- Питание и земля: 0.75 мм²
- Катушки: 1 мм² (Lмакс = 20 м); 1,5 мм² (для большего расстояния) экранированный
- Опорное напряжение и обратная связь LVDT: 0,25мм² (Lмакс = 20 м) экранированный

Замечание: текущие опции опорных сигналов должны обеспечивать связь на разъемах опорного сигнала и обратной связи;

Возможна подходящая электроника датчики или конвертеры.

- Сервисный сигнал: 0,25 ${\rm mm}^2$ (Lmaкс = 20 ${\rm m}$) или экранированный;
- Электронные датчики: $0.25~\text{mm}^2$ (Lmakc = 20~m) или экранированный;

2.3 Подавление электрических шумов

При запуске системы желательно проверить, что обратные связи, опорные сигналы и заземления свободны от интерференции и электрического шума, которые могу повлиять на сигналы и вызвать неустойчивость всей системы.

Электрические шумы – нестационарные колебания по амплитуде и по частоте вокруг среднего значения сигнала; они могут быть подавлены путем экранирования и заземления кабелей сигнала, см. раздел [5]. Большинство электрических шумов происходит из-за внешних магнитных полей, производимых трансформаторами, электромоторами, распределительными щитами и т.д.

2.4 Сервисные сигналы встроенных драйверов и опции

- Сигнал монитора (стандарт)

Выходной сигнал (0-5 B, \pm 10B) возможен для мониторинга опорного сигнала на электромагните (АЕ, AES) или положения золотника в распределителе (ТЕ, LE, TES, TERS). Оба сигнала могут быть связаны с блоком управления для последовательности операций или диагностики.

Замечание: электрические сигналы мониторинга, взятые через электронику клапана, не должны использоваться для выключения функций безопасности машины. Это соответствует Европейским Стандартам (требования безопасности систем и компонентов, применяющих жидкостную и гидравлическую технологию)

Опорный сигнал по току (опция /I)

Обеспечивается опорный сигнал и сигналы обратной связи 4-20 мА вместо стандартных 0-10 В (± 10 В). Обычно применяется в случае большого расстояния между блоком управления и клапаном или если на опорный сигнал могут воздействовать электрические помехи. При обрыве кабеля опорного сигнала происходит отключение распределителя.

- Сигнал неисправности (опция /F)

Опция безопасности, обеспечивающая переключение выходного сигнала на ноль в случае обрыва кабеля от датчика. В этом случае распределитель работать не будет.

- Сигнал подключения (опция /Q)

Опция безопасности, обеспечивающая возможность включения и выключения без прекращения электропитания.

- Безопасные условия

В случае отсутствия сигнала обратной связи из-за замыкания или обрыва, срабатывает автоматическая остановка карты управления и на клапаны подается нулевой ток. В то же время светодиод (внутри корпуса встроенной электроники) сигнализирует об опасности.

- Сигналы логического состояния для E-RI-TE и E-RI-LE (опция /\$)

Эта функция обеспечивает три выходных сигнала, для обеспечения вывода на монитор положения золотника в реальном времени. Сигнал «Нулевое положение» - «включен» (22 В 20 мА), когда золотник в центральном положении, в то время как другие два сигнала («Положение S1» и «Положение S2»)

«включены», когда золотник перемещается согласно тяге от электромагнита \$1 или \$2 соответственно. Эти сигналы безопасности могут применяться, чтобы выключить функции безопасности машины.

- Подключение и ошибка для E-RI-TE и E-RI-LE (

Опция обеспечивает те же характеристики, что и /F и /Q плюс сигнал положения золотника на монитор 0-10 В (или +- 10 В).

- Двойное питание, подключение и ошибка для E-RI-TES, E-RI-TERS, E-RI-LES (опция /Z)

безопасности, специально интерфейсов –ВС и –ВР, предусматривает два раздельных вида электропитания по цифровым электронным контурам и по фазе питания электромагнита. Кроме того, предусмотрены сигналы Отключения и Ошибки. Опция /Z позволяет прервать функционирование клапана ОТКАЮЧИВ подачу питания на электромагнит (например в аварийном случае, как предусмотрено Европейскими Нормами EN954-1 комплектующих с категорией защиты 2). При этом остается подача питания на цифровые электронные контуры, что позволяет избежать возможной ситуации сбоя контроля шины.

- P/Q управление для E-RI-TES-PS и E-RI-LES-PS (опция /SP)

Опция, обеспечивающая в дополнение к стандартным функциям клапана обратную связь по макс. давлению, таким образом реализуя регулировку P/Q. Удаленный датчик давления должен быть установлен в системе и кабелем fieldbus соединяться с клапаном. Если реальное давление в системе остается ниже опорного сигнала, драйвер по обратной связи управляет золотником согласно опорному сигналу по расходу. Когда реальное давление близко к опорному сигналу, драйвер автоматически управляет давлением по замкнутому контуру. Эта опция позволяет точно регулировать динамику давления. До 4 параметров давления PID могут быть выбраны в течение движения оси через релейные сигналы к 12контактному разъему, чтобы оптимизировать управление в различных фазах цикла

- P/Q управление для E-RI-TES-BC (-BP) и E-RI-LES-BC (-BP) (опция /ZP)

Встроенный цифровой Р/Q контроллер, обеспечивающий такие же характеристики как опция /SP плюс дополнительное двойное питание, включение и ошибка. В этой опции мультиустановка параметров давления PID может быть оперативно выбрана в течение движения оси через интерфейсы -BC или -BP.

- Обратный сигнал по току для E-RI-PES (

Электроника насоса настраивается на получение сигнала 4-20 мА от удаленного датчика давления вместо стандартных 0-10 В.

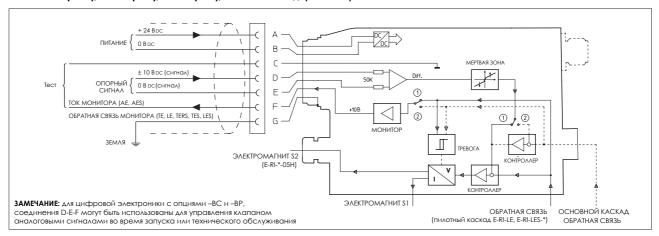
- P/Q управление для E-RI-PES-PS (опция /S)

Опция обеспечивает 4 установки параметров давления PID которые могут быть оперативно выбраны в течение движения оси через через релейные сигналы к 12-контактному разъему, чтобы оптимизировать управление в различных фазах цикла машины.

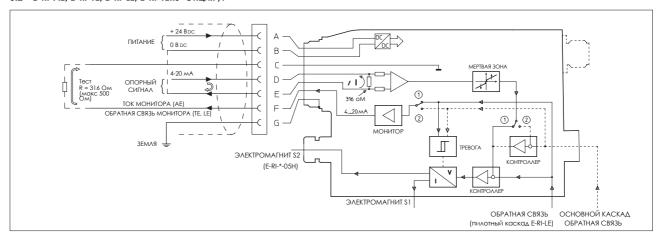
- P/Q управление для E-RI-PES-BC (-BP) (опция /Z)

Встроенный цифровой Р/Q контроллер, обеспечивающий такие же характеристики как опция /SP плюс дополнительное двойное питание, включение и ошибка. В этой опции мультиустановка параметров давления PID может быть оперативно выбрана в течение движения оси через интерфейсы –BC или –BP.

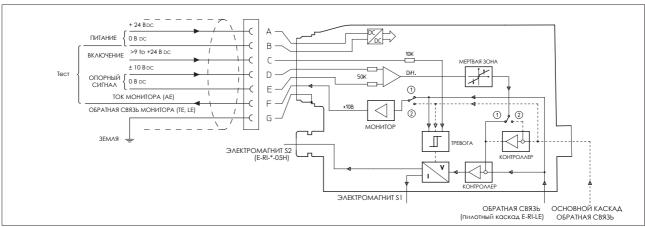
2.5 Электронные калибровки

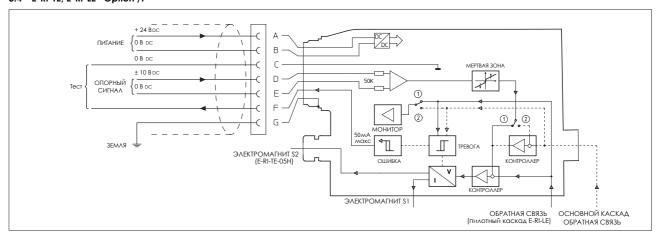

Клапаны со встроенной электроникой обычно не нуждаются в какой-либо калибровке со стороны конечного пользователя, так как эта операция была выполнена перед поставкой компонента (клапаны со встроенной электроникой используются все больше для более легкого обслуживания и увеличения надежности). Однако можно регулировать Уклон для

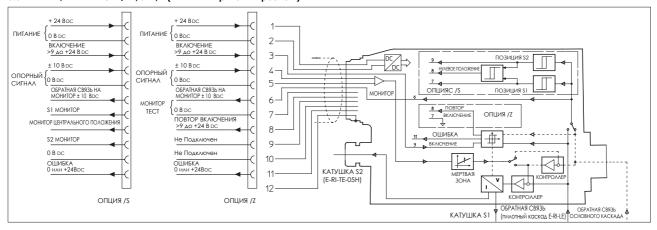
возможности регулирования между входным опорным нулем и центральным положением золотника (привод в устойчивом положении): новая калибровка может быть выполнена со специфическими гидравлическими условиями (то есть цилиндр с большой разницей объемов и/или высокий др). Когда электронные регуляторы, Eurocard другого формата, установлены в блоке управления, процедуры регулирования показаны в соответствующих технических таблицах: тщательно изучите их перед запуском. В случае специальных требований персональные калибровки могут быть выполнены в сотрудничестве с техническим отделом Atos.

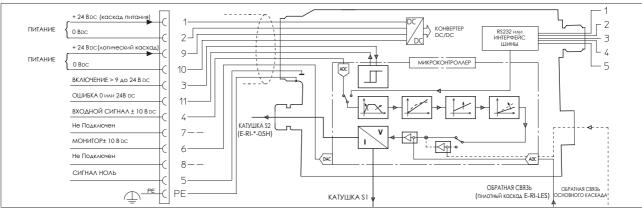

2.6 Температура и окружающая среда

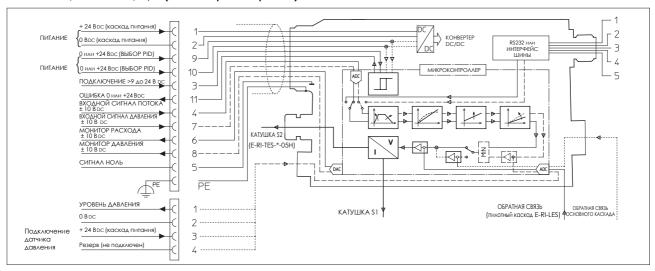
Всегда проверяйте, что окружающая среда совпадает с данными, указанными в таблицах. В случае необходимости обеспечьте условия в «электронной комнате». В частности, встроенная электроника не может использоваться, когда окружающая температура выше +60°С или ниже -20°С (от -20°С до +50°С для цифрового исполнения—TFRS).

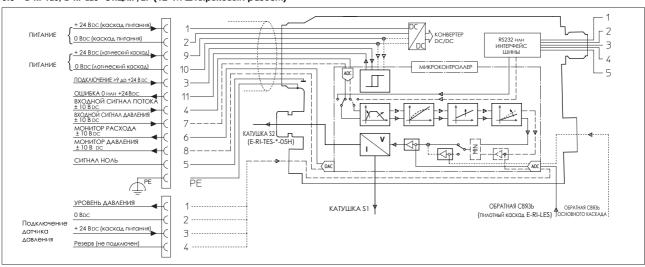

3.1 E-RI-AE (-AES), E-RI-TE (-TES), E-RI-LE (-LES), E-RI-TERS Стандартные версии

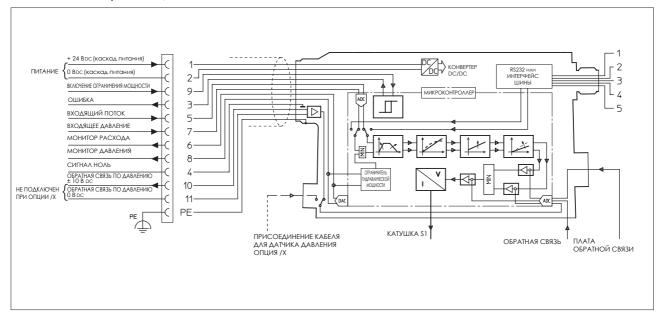

3.2 E-RI-AE, E-RI-TE, E-RI-LE, E-RI-TERS Опция /I

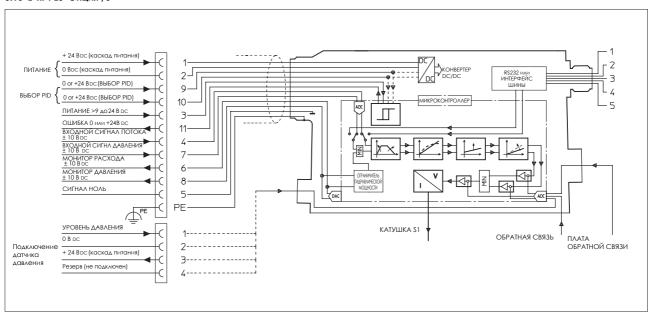

3.3 E-RI-AE, E-RI-TE, E-RI-LE Опция /Q

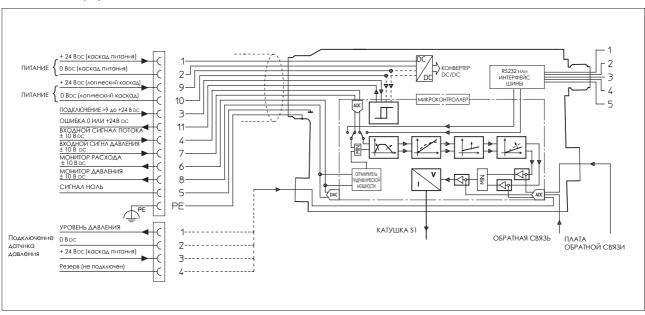

3.4 E-RI-TE, E-RI-LE Option /F


3.5 E-RI-TE, E-RI-LE Опция /S и /Z (12-ти штырьковый разъем)

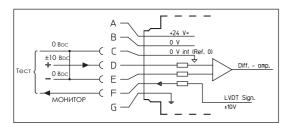

3.6 E-RI-AES, E-RI-TES, E-RI-LES Опция /Z (12-ти штырьковый разъем)


3.7 E-RI-TES, E-RI-LES Опция /SP (12-ти штырьковый разъем)


3.8 E-RI-TES, E-RI-LES Опция /ZP (12-ти штырьковый разъем)


3.9 E-RI-PES Стандарт и опция /X

3.10 E-RI-PES Опция /S



3.11 E-RI-PES Опция /Z

4 ПОДКЛЮЧЕНИЯ КОМАНДНОГО СИГНАЛА

Подсоединение командного сигнала к электронике зависит от типа сигнала, генерируемого в PLC или CNC. Следующие рисунки показывают типичные подключения в случае общего нуля или различных командных ситуаций.

Питание и сигнал общего нуля Рис. А

Diff.-amp. LVDT Sign. 0 V int (Ref. 0)

Α В O Boo 0 V C D $\overline{}$ Ε \cdot F LVDT Sign. МОНИТОР G ±10V

Рис. В Различные сигналы, не подключенные к нулю (плавающий сигнал)

КОМАНДНЫЙ СИГНАЛ ДЛЯ ОПЦИИ /І

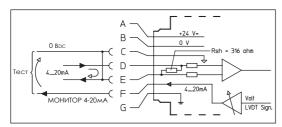


Рис. С Общий ноль

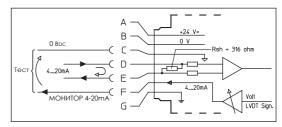


Рис. D Различные входные сигналы

5 ПОДКЛЮЧЕНИЯ ЭКРАНИРОВКИ

Правильная экранировка сигнальных кабелей должна обеспечивать защиту электроники от шумов, которые могут нарушить функционирование клапана. Примеры правильного экранирования показаны на рис. Е и F.

Подключений на рис. С и Н необходимо избегать, т.к. получается замкнутый контур и помехи начинают наводиться еще сильнее.

ПРАВИЛЬНЫЕ ПОДКЛЮЧЕНИЯ ЭКРАНА

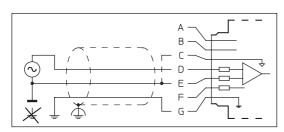


Рис. Е Экран подключен по заземлению

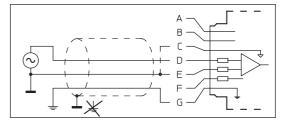


Рис. Р Экран подключен по питанию земли

НЕПРАВИЛЬНЫЕ ПОДКЛЮЧЕНИЯ ЭКРАНА

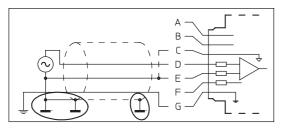


Рис. G Никогда не подключайте экран с обеих сторон

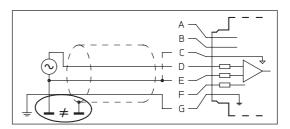


Рис. Н Никогда не подключайте экран по заземлениям, имеющим различные потенциалы

Символы:

Стандартное заземление

Питание ЗЕМЛЯ

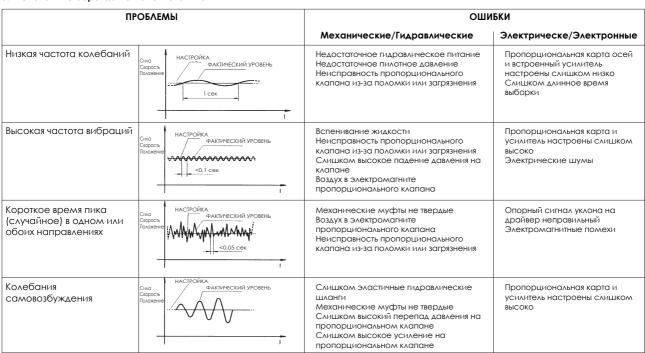
📥 Защищенное заземление

6 ТАБЛИЦЫ ВОЗМОЖНЫХ НЕИСПРАВНОСТЕЙ

Для оценки ошибки и поиска неисправного компонента в электрогидравлических системах, необходима совместная работа инженеров по электронике и гидравлике.

Кроме того, хорошее знание технических таблиц для каждого компонента, для первичного анализа системы необходимо оценить гидравлическую схему и схему электрические подключения, связанную с операционным циклом.

Heт общих рецептов по поиску неисправностей из-за большого разнообразия электрогидравлических систем; однако следующие таблицы показывают необходимые стартовые точки.


Замечания:

- Большинство проблем решается заменой дефектных компонентов в блоке. Дефектные компоненты могут быть восстановлены производителем.
- Следующие таблицы не рассматривают общие системные ошибки.

6.1 Системы без обратной связи

ПРОБЛЕМЫ	ОШИБКИ		
	Механические/Гидравлические	Электрическе/Электронные	
Непостоянное движение осей Колебания давления и/или расхода	Бракованный насос Воздух в системе Грязная жидкость Недостаточное пилотное давление в двухкаскадных клапанах Залипающий эффект при чрезмерном трении в уплотнениях цилиндра Скорость ниже минимума в гидромоторах	Недостаточное электропитание Зашумленный сигнал Электрические и электромагнитные помехи	
Колебания привода	Шланги не эластичны Удаленный обратный клапан не срабатывает немедленно Неполная прокачка Внутренние утечки	Настройка тока наклона слишком высокая время рампы слишком длинное Превышен лимит переключений время электрического переключения слишком медленное	
Бездействие или неконтролируемые оси	Бракованный насос Блокировка пропорционального предохранительного клапана (загрязнение) Ручные клапаны и настройки неправильные	Ошибка кабелей Обрыв электроуправления Неправильная настройка или поломка сигнализирующих устройств Нехватка электронитания и/или опорного сигнала Датчики не откалиброваны	
Привод работает слишком медленно	Внутренние утечки насоса из-за износа Клапан управления расходом настроен по слишком низкому уровню	Неправильный опорный сигнал Неправильное регулирование шкалы	
Недостаточность сил и моментов	Чрезмерное сопротивление в сливной и рабочей линиях Очень низкая настройка рабочего давления в предохранительном клапане Чрезмерное падение давления в клапанах Внутренние утечки в насосах и клапанах из-за износа	Неправильный опорный сигнал Неправильное регулирование шкалы	
Линейные удары во время управления	Время переключения пропорциональных клапанов слишком быстрое Дроссели или отверстия повреждены Нет дросселирования перед аккумуляторной системой Чрезмерные массы и усилия, прикладываемые к приводу	Отсутствует или слишком короткое время рампы	
Чрезмерная рабочая температура	Недостаточное поперечное сечение линий Чрезмерная продолжительность работы Настройка давления слишком высокая Несоответствующая охлаждающая система Нулевое давление циркуляции, недействующее во время рабочих интервалов		
Чрезмерный шум	Заблокированный фильтр Вспенивание жидкости Плохо закреплен насос или мотор Чрезмерное сопротивление во всасывающей линии Гудение от пропорциональных предохранительных клапанов Воздух в электромагнитном клапане	Неправильное регулирование колебаний	

6.2 Системы с обратной связью – статика

6.3 Системы с обратной связью – статические условия: пошаговые

ПРОБЛЕМЫ		ОШИБКИ		
		Механические/Гидравлические	Электрические/Электронные	
Несовпадение в одном направлении	Сила Скорость Положение ФАКТИЧЕСКИЙ УРОВЕНЬ	Слишком высокое Δ на клапане	Пропорциональная карта осей и встроенный усилитель настроены слишком низко Слишком низкое усиление в осевой карте	
Несовпадение в обоих направлениях	Сіма Скорость Положення Фактичісский уровень	Механические муфты не твердые Слишком эластичные шланги Пропорциональный клапан смонтирован слишком далеко от привода	Слишком высокое усиление в Пропорциональной осевой карте Слишком низкая настройка Встроенной осевой карты	
Медленная настройка	Сима Скорость Поможение ФАКТИЧЕСКИЙ УРОВЕНЬ	Усиление давления на пропорциональном клапане слишком низкое	Слишком низкое усиление в осевой карте Неправильный ток уклона в драйвере	
Привод не может работать по настройке	Сима Скорость Положение ФАКТИЧЕСКИЙ УРОВЕНЬ	Недостаточное гидравлическое давление или расход	Слишком высокое усиление в Пропорциональной осевой карте Усилитель настроен слишком низко Неправильные Масштаб и Уклон в драйвере	
Непостоянное управление	Сима Скорость Положение ФАКТИЧЕСКИЙ УРОВЕНЬ	Неустойчивая связь датчика обратной связи с приводом Слишком эластичные шланги Воздух в электромагните пропорционального клапана	Пропорциональное усиление настроено слишком высоко Встроенный усилитель настроен слишком низко Электрические шумы	
Замедленное управление	Сма Схоросъ Поможение ФАКТИЧЕСКИЙ УРОВЕНЬ	Неоткалиброванный датчик обратной связи Недостаточная гидравлическая мощность	Нехватка электроэнергии Нехватка опорного сигнала или сигнала	
Плохая повторяемость и высокий гистерезис	Сма Схорость Положение НАСТРОЙКА ФАКТИЧЕСКИЙ УРОВЕНЬ	Неустойчивая связь датчика обратной связи с приводом	Слишком высокая настройка усиления в Пропорциональной осевой карте Встроенный усилитель настроен слишком низко	

6.4 Системы с обратной связью – динамические условия: частотная характеристика

ПРОБЛЕМЫ		ОШИБКИ	
		Механические/Гидравлические	Электрические/Электронные
Затухание амплитуды	Сима Схорость Полажение ФАКТИЧЕСКИЙ УРОВЕНЬ	Недостаточное давление и расход	Слишком низкая настройка усиления в Пропорциональной осевой карте Регулировка масштаба в драйвере слишком низкая
Усиление волны	Сидо Сорость Положения	Слишком эластичные шланги Пропорциональный клапан смонтирован слишком далеко от привода	Неправильная регулировка масштаба в драйвере
Задержка по времени	Сима Скорость Положение ААСТРОЙКА ФАКТИЧЕСКИЙ УРОВЕНЬ	Недостаточное давление и расход	Неправильное время рампы Слишком низкая настройка усиления в осевой карте
Вибрация	Сид Сорось Положение	Воздух в электромагните пропорционального клапана	Слишком высокое усиление в Пропорциональной осевой карте Электрические шумы