

Пропорциональные редукционные клапаны типа RZGO, HZGO, KZGO

пилотного управления, плиточного или модульного монтажа, ISO 4401 размер 06, 10

Это пропорциональные редукционные клапаны, 3-х линейные, пилотного управления, возможны в двух различных исполнениях:

- R (плиточный монтаж)
- **Н** или **К** (модульный монтаж)

Они действуют совместно с электронными регуляторами (8), подающими на клапан ток, изменяющийся в зависимости от опорного сигнала, который поступает от узла контроля и управления манины.

, . Они возможны в различных исполнениях:

- -А: без датчика давления
- -AE, -AES: такие же, как -A плюс аналоговая или цифровая (AES) встроенная электроника (5).
- -TERS: С Датчиком давления (4) плюс встроенная электроника (5) для обратной связи; данные датчики являются встроенными и предварительно тарированными обеспечения более высоких статических и эксплуатационных характеристик
- -AERS: такие же, как и -TERS, но без встроенного датчика давления (предназначен для связи удаленного датчика давления).

Редуцируемое давление контролируется олотником (1), управляемым пропор-Пиональным пилотным переливным клапаном (2). Промежуточный картридж компенсации потока (3) поддерживает постоянный пилотный поток и таким образом улучшается стабильность при высоких давлениях.

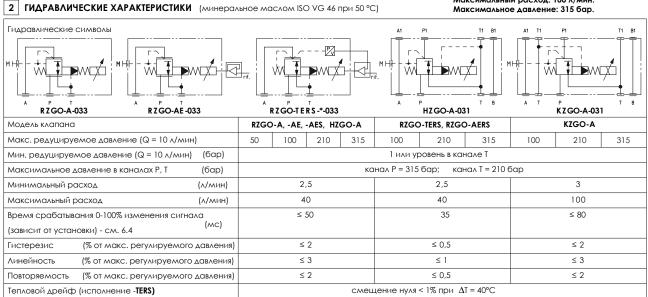
Встроенный электронный блок, выполненная на заводе изготовителе обеспечивают функциональные характеристики взаимозаменяемость облегчая процесс подключения и установки.

Для версий -AES; -TERS и -AEI следующие интерфейсы связи (6): -AERS имеются

- -PS, интерфейс связи последовательного соединения RS232. Опорный сигнал на клапан обеспечивается аналоговыми командами, направляемыми на разъем с 7 (или 12) контактами (7).

 • -BC, интерфейс CANbus.

 • -BP, интерфейс PROFIBUS-DP.


На интерфейсах типа -ВС и -ВР опорный с игнал на клапаны направляется по "fieldbus". В процессе запуска или же технического обслуживания клапаны могут приводиться в действие при помощи аналоговых сигналов, которые подаются на разъем с 7 (или 12)

штырями (7).

Катушки встроены в пластиковый корпус (класс изоляции Н), а клапаны устойчивы к вибрации, ударам и воздействию атмосферной среды.

Редуцируемое давление в канале А , клапанов 033 и в канале Р1 для клапанов 031. Минимальное регулируемое давление 0 бар; Монтажная поверхность: ISO 4401, размеры 06,

Максимальный расход: 100 л/мин. Максимальное давление: 315 бар

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ПРОПОРЦИОНАЛЬНЫХ РЕДУКЦИОННЫХ КЛАПАНОВ ТИПА RZGO, HZGO, KZGO

Монтажное положение	Λιοδοε
Характеристика стыковочной поверхности	Шероховатость Ra 0.4 неплоскостность 0,01/100 (ISO 1101)
Температура окружающей среды	-20°C - +70°C для исполнения -A; -20°C - +60°C для -AE и -AES; -20°C - +50°C для -TERS и -AERS
Рабочая жидкость	Гидравлическое масло по DIN 51524 535, для других жидкостей см. раздел (1)
Рекомендуемая вязкость	15 - 100 сСт при 40°С (ISO VG 15-100)
Класс загрязнения жидкости	ISO 18/15, достигается при тонкости фильтрации 10 мкм и рекомендуемом β10≥ 75
Температура рабочей жидкости	-20°C - +60°C (стандартные уплотнения и /WG); -20°C - +80°C (уплотнения / PE)

3.1 Электрические характеристики

Сопротивление R катушки при 20°C	3 - 3.3 Ω для стандартной катушки 12 В DC; 2 - 2,2 Ω для катушки 6 В DC; 13 - 13,4 Ω для катушки 18 В DC
Максимальный ток на электромагните	2,6 А на стандартной катушке 12 В пост. тока; 3,25 А на катушке 6 В DC; 1,5 А на катушке 18 В DC
Максимальная мощность	40 Ватт
Категория защиты (CEI EN-60529)	IP65 для версии -A ; IP65-67 для версий -AE , -TERS и AERS (в зависимости от типа разъёма, см. раздел 4.7)
Коэффициент использования	Непрерывная эксплуатация (ED=100%)

4 ВСТРОЕННАЯ ЭЛЕКТРОНИКА: ОПЦИИ И ПРИСОЕДИНЕНИЯ

Предусматривает опорные сигналы и сигналы обратной связи по току 4-20 мА вместо стандартных 0-10 В. Как правило, данная опция применяется в случае значительного расстояния между узлом управления и контроля машины и клапаном или же в случае, когда на опорный сигнал могут воздействовать электрические помехи. При обрыве кабеля опорного сигнала происходит отключение клапана.

4.2 Опция /Q

Опция защиты, предусматривающая возможность подключения или отключения клапана без прерывания электропитания.

4.3 Опция /Z

4.3 Опция / 2. Специфическая опция защиты для интерфейсов связи -BC и -BP, предусматривает два раздельных вида электропитания по цифровым электронным контурам и по фазе питания электромагнита. Кроме того, предусмотрены сигналы подключения и ошибки. Опция / 2 позволяет прервать функционирование клапана, отключив подачу питания на электромагнит (например, в аверийном случае, как предусмотрено Европейскими Нормами EN954-1 для комплектующих с категорией защиты 2). При этом остается подача питания на цифровые электронные контуры, что позволяет избежать возможной ситуации сбоя контроля "fieldbus" машины. По электросоединениям см. табл. G115 и G205.

4.4 Опция /С

Электронный блок клапана настроен на получение 4-20 мА в качестве сигнала обратной связи от удаленного датчика давления вместо стандартных 0-10 В.

4.5 Опция /Н

Высокопрочное исполнение для применения в трудных условиях, предусматривающее специальную механическую защиту датчика давления от случайных ударов.

4.6 Подсоединения встроенной электроники

Для электроподсоединения должны быть предусмотрены экранированные кабели: экран должен быть подсоединен к нулю питания со стороны генератора, см. табл. F003

	РАЗЪЁМ ПИРАДОП МЁФЕВА							
кон- такт	ОПИСАНИЕ СИГНАЛА	-AE, -AES, -TERS, -AERS	-AE/I, -TERS/I, -AERS/I	-AE/Q				
Α	Питание 24 В пост.тока	Стабилизированное: +24B DC						
В	Питание ноль	Отфильтрованное и выпрямленное: В _{rm}	_{IS} = 21 - 33 (макс. отклонения 2В _{рр})					
С	Опорный ноль	Опорный 0 B DC	Опорный 0 B DC	Сигнал подключения для нормального функционирования 9-24 В DC				
D	Опорный +	0 - 10 B DC	4 - 20 mA	0 - 10 B				
Е	Опорный -	0-10000	4- 20111A	0-105				
F	Монитор рабочий ток (для -AE; -AES) регулируемое давление (для -TERS; -AERS)	0-10 В на контакт "С" (сигнал 0 В DC) 1В = 1A 1В = 10% регулируемого давления	0-5 B (-AE/I) 4-20 мА (-TERS/I, -AERS/I) 1B = 1A; 4-20 мА = 0-100% регулируемого давления	0-5 В на контакт "В" (сигнал 0 В DC 1В = 1 A 				
G	Заземление	Подключается только, если питание не соответ	ствует VDE 0551 (СЕІ 14/6)					

	РАЗЪЕМЫ СВЯЗИ (-AES, -TERS, -AERS)							
Опция связи -P\$ (R\$232) штыревой разъем		- PS (RS232) штыревой разъем	-BC (CAN Bus) штыревой разъем	-BP (PROFIBUS-DP) гнездовой разъем (обратный ключ)				
		NC	CAN_SHLD	+5B				
_	1	Не подсоединен	Экран	Напряжение завершения				
жонгактов ле сигнала 3		NC	NC	LINE-A Линия шины				
	2	Не подсоединен	Не подсоединен	(высокий сигнал)				
		RS_GND Сигнал нуля для линий	CAN_GND Сигнал нуля для линий	DGND Сигнал нуля для линий передачи данных/				
		передачи данных	передачи данных	напряжения завершения				
YNCAO	4	RS_RX	САN_Н Линия шины	LINE-В Линия шины				
ANC/ OUNC		Линия приема данных клапана	(высокий сигнал)	(низкий сигнал)				
~	_	RS_TX	CAN_L	SHIELD				
	5	Линия передачи данных клапана	Линия шины (низкий сигнал)	Экран				

	РАЗЪЕМ ДАТЧИКА ДАВЛЕНИЯ (-AERS), см. раздел (7)					
KOH- TAKT	d- стандартная версия Опция /C					
1	Сигнал давления	Сигнал давления				
2	Зарезервировано (не подсоединять)	Зарезервировано (не подсоединять)				
3	Питание	Питание				
4	GND	Зарезервировано (не подсоединять)				

Замечание:

- Электрические сигналы (например, сигналы обратной связи), обработанные электронным блоком клапана, не должны применяться для отключения функций защиты машины. Это соответствует Европейским Стандартам (требования безопасности систем и компонентов, применяющих жидкостную и гидравлическую технологию, EN

- Инструкции, содержащие основную информацию по подключению и запуску, а также таблицы с техническими спецификациями всегда поставляются с соответствующими узлами.

4.7 Коды моделей разъемов питания и связи

ВЕРСИЯ КЛАПАНА	-A	-AE, -AES, -TERS, -AERS		-AES/Z, -TERS/Z, -AERS/Z	-RS232 (-PS) OR CANBUS (-BC)	PROFIBUS (-BP)	ΔΑΤЧИΚ ΔΑΒΛΕΗИЯ (τολοκο αλα AERS)
КОД РАЗЪЕМА	SP-666	SP-ZH-7P(1)	SP-ZM-7P (1)	SP-ZH-12P (1)	SP-ZH-5P (1)	SP-ZH-5P/BP (1)	SP-ZH-4P-M8/5(1)(2)
КЛАСС ЗАЩИТЫ	IP65	IP67	IP67	IP65	IP67	IP67	IP67

(2) разъем М8 в сборе с кабелем длиной 5 м

5 УСТРОЙСТВА ДЛЯ ПРОГРАММИРОВАНИЯ

Функциональные параметры цифровых клапанов, такие как уклон, шкала, рампа и линеаризация, являются регулируемыми, могут быть легко установлены и тупкционально прафическим интерфейсом при использовании соответствующего программного обеспечения и устройств, совместимых с РС:

КIT-E-SW-PS для электроники с интерфейсом RS232 (опция -PS)

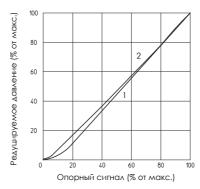
КIT-E-SW-PS-TERS только для электроники -TERS-PS - упрощенной версии KIT-E-SW-PS с регулировками только уклона и шкалы.

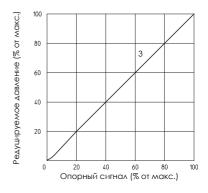
KIT-E-SW-PS-TERS/U как KIT-E-SW-PS-TERS с интерфейсом USB KIT-E-SW-BC для электроники с интерфейсом CANbus (опция -BC)

КІТ-E-SW-BP для электроники с интерфейсом PROFIBUS-DP (опция -BP)
см. табл. G500 для полной информации о программных комплектах и минимальных системных требованиях.

Только для опций -BC и -BP, функциональные параметры могут быть альтернативно установлены через блок управления fieldbus, используя стандартный коммуникационный протокол, разработанный Atos. Инструкции по стандартным протоколам (DSC301V4.02, DSP408 для CANbus и DPVO для PROFIBUS-DP) описаны в пользовательских руководствах MAN-S-BC (для

опции -BC) и MAN-S-BP (для опции -BP), снабжены соответствующими программными комплектами Вышеупомянутые устройства необходимо заказывать отдельно.

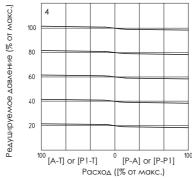

6.1 Регулировочные графики

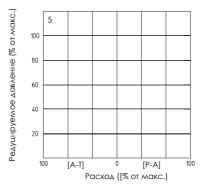

При расходе Q = 10 л/мин

- 1 = RZGO-A; RZGO-AE; RZGO-AES, HZGO-A
- 2 = RZGO-TERS
- 3 = KZGO-A

Замечания:

- 1) Для клапанов с цифровой электроникой регулируемые характеристики могут быть изменены путем настройки внутрипрограммных параметров, см. табл. G500
- 2) Для исполнений -А, -АЕ и -АЕ\$ наличие противодавления в канале Т может изменить значения регулировок

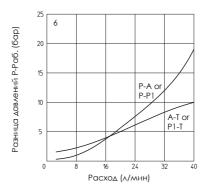


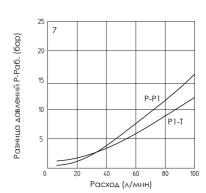


6.2 Графики давление/расход

с установкой опорного сигнала на Q = 10 л/мин

- 4 = RZGO-A; RZGO-AE; RZGO-AES, KZGO-A
- 5 = RZGO-TERS

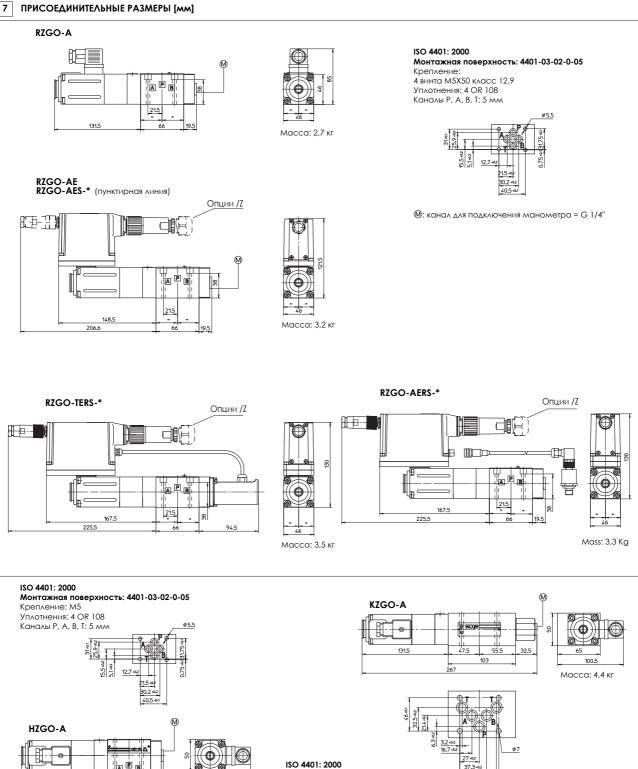



6.3 Расходно-перепадные графики

при нулевом опорном сигнале

6 = RZGO-A; RZGO-AE; RZGO-AES, RZGO-TERS, HZGO-A

7 = KZGO-A


6.4 Динамическое реагирование

Для клапанов с цифровой электроникой регулируемые характеристики могут быть изменены путем настройки внутрипрограммных параметров, см.

Для исполнений -A, -AE и -AES наличие противодавления в канале T может изменить значения регулировок.

Время реагирования в разделе [2] принимается усредненным.

Встроенная обратная связь в клапанах -TERS и -AERS является частью общей устойчивости гидравлической системы: лучше устойчивость, лучше реагирование. Клапаны динамического реагирования могут быть оптимизированы в зависимости от особенностей устойчивости гидравлической системы путем настроек встроенной программы. Эта настройка особенно полезна в гидросистемах с аккумуляторами и/или длинными шлангами.

8 ЭЛЕКТРОННЫЕ ДРАЙВЕРЫ ДЛЯ RZGO, HZGO И KZGO

®: канал для подключения манометра = G 1/4"

Модель клапана	-A				-AE (1)	-AES (1)	-TERS (1)	-AERS (1)
Модели драйверов	E-MI-AC-01F	E-BM-AC-01F	E-ME-AC-01F	E-RP-AC-01F	E-RI-AE	E-RI-AES	E-RI-TERS	E-RI-AERS
Техническое описание	G010	G025	G035	G100	G110	G115	G205	

Монтажная поверхность: 4401-05-04-0-05 Крепление: M5 Уплотнения: 5 OR 2050.1 OR 108 Каналы Р, А, В, Т: 11,5 мм (макс.)

Полную информацию о характеристиках драйверов и соответствующих опциях, см. техническое описание в таблице.
(1) Только для **RZGO**

Масса: 3,8 кг

9 МОНТАЖНЫЕ ПЛИТЫ ДЛЯ RZGO

Модель	Расположение каналов	Резьба каналов А-В-Р-Т	Диаметр (мм)	Масса (кг)
BA-202	Каналы А, В, ,Р ,Т снизу	3/8"	-	1,2
BA-204	Каналы Р, Т снизу; Каналы А, В сбоку	3/8"	25,5	1,8
BA-302	Каналы А, В, Р, Т снизу	1/2"	30	1,8